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Saddle-splay and mechanical instability in nematics 
confined to a cylindrical annular geometry 

by P. PALFFY-MUHORAY?, A. SPARAVIGNAS 
and A. STRIGAZZI*$ 

t Liquid Crystal Institute and Department of Physics, 
Kent State University, Kent, Ohio 44242, U.S.A. 
1 Dipartimento di Fisica, Politecnico di Torino, 

G.N.S.M.-C.I.S.M. and I.N.F.M., Unita di Torino, 
C.so Duca Degli Abruzzi 24, 1-10129 Torino, Italy 

The occurrence of a mechanical instability is predicted for a nematic liquid 
crystal confined to a cylindrical annular geometry. The surfaces impose either a 
bend distortion (azimuthal configuration) or a splay distortion (radial configur- 
ation) in the plane of the cylinders’ cross-section. Remarkably, the instability 
appears also with strong anchoring, and, when the torsional anchoring is weak, then 
the saddle-splay elastic constant K , ,  deeply influences the critical radii. 

1. Introduction 
We consider the behaviour of a nematic liquid crystal confined to the region 

between two concentric cylinders such that the alignment of the director at both 
surfaces is either azimuthal (see figure 1) or radial (see figure 2). The mechanical stability 
of the corresponding configurations, where the director is locally either along the 
azimuthal or radial directions, is examined using linear stability theory. We find that, as 
the outer radius is increased, both the azimuthal and radial configurations lose their 
stability, and a distorted configuration becomes energetically favourable. The distor- 
tions may be out-of-plane, where the director escapes into the third dimension [ 1-33, or 
they may be in-plane. The effect of weak anchoring is to reduce the threshold for the 
transitions. For a certain range of parameters, bistable behaviour is found. 

2. Theory 
The free energy due to elastic distortions in the bulk is 

S= ( ~ [ K , , ( V ~ n ) ’ + K , , ( n ~ V x  n)’+K,,(n x V x  n)’] 

(1) 

s 
- ( K ,  + K,,)V (n(V - n) + n x V x n)} d r! 

where K 1 , ,  K,,, K,, are the elastic constants of splay, twist, and bend, respectively and 
K , ,  is the surface-like saddle-splay elastic constant [4-61. As shown in figures 1 and 2, 
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1144 P. Pallfy-Muhoray et al. 

the components of the director n, in cylindrical coordinates, are 

n, = cos 8 sin y, 

n+ = cos 6 cos y, 

n, = sin 8, 

and we assume that 8 and y depend only on r, due to the symmetry. 
It is useful to make the conformal transformation r-+ex, q h y  and z-+z. Omitting 

the last term in equation (l), which can be converted into a surface integral, the bulk free 
energy per unit length becomes 

XL 

+ K,, [ (n,” - n, %>’ + ( nxny + n, 2r + (n, %)’I} dx, (3) 

where xo = In ro and x1 =In rl ,  and ro and r l  are the radii of the inside and outside 
cylinders and L is the cylinder length. Since terms exist in equation (3) which are not 
derivatives with respect to x ,  the free energy may be minimized by configurations where 
the director field varies with x, i.e. by distortions of the radial or azimuthal 
configurations. 

Writing the saddle splay term in equation (1) as a surface integral gives rise to the 
contribution to the free energy 

we expect the free energy contributions from surface anchoring to take the form 

(5 )  kanchoring= u- (f W(n - k)2 +$U(n s r )2 }2~rL ,  

for each surface, where k and r are unit vectors in the axial and radial directions, and W 
and U are anchoring strengths. This gives 

0- 

(6) 
anchoring - 

- Woron,ZIx,+ ~oron,21,,+ ~ l ~ l n , Z l x 1  + ~1r1nr2Ix1. XL 

The bulk free energy, expanded up to quadratic terms in the angles, is 

+ K 3 J  - y 2  - 202 - 2 y y ’ ) )  dx,  (7) 

where primes denote differentiation with respect to x, while the surface free energy is 
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(4 
Figure 1. Azimuthal configuration (a) director profile in the undisturbed initial bend distortion; 

(b) above the thresholds for both axial escape and in-plane splay deformation; (c) local 
director n(P) at the arbitrary point P(r) with the twist angle O(r) and the tilt angle y(r)  in the 
local frame. 
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1146 P. Pallfy-Muhoray et al. 
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Figure 2. Radial configuration (a) director profile in the undisturbed initial splay distortion; 
(b) above the thresholds for both axial escape and in-plane bend deformation; (c) local 
director n(P) at the arbitrary point P(r) with the bend angle out-of-plane e(r) and the bend 
angle in-plane y(r), in the local frame. 
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Mechanical instability in nematics 1147 

Linear stability analysis is carried out as follows. The dynamical Landau-Khalatnikov 
equations describing the evolution of a given configuration are 

and (9) 

where ,u and v are viscosities, and (Sf;,,/S8) and (df;,,/6y) are the first variations of the 
total free energy density with respect to 8 and y. Assuming that y(t, x )  = exp ( l t )y (x) ,  this 
gives 

where 
y” + R2 y = 0, (10) 

The boundary conditions are 

and 
- 

and similarly for 8. In the case of strong anchoring, this gives R ( x ,  - xo)  = rnn, where rn 
is an integer #O. Then 

and the system is unstable if l > O .  

follows: 
In the case of strong anchoring, the thresholds for the mechanical instabilities are as 

rl =roexP(;). 

where wc is given by 

and 

splay (in-plane) distortion, 

for the azimuthal configuration, whereas for the radial configuration the corresponding 
thresholds: 

escape (axial bend) distortion, 

and i 
bend (in-plane) distortion, 

are obtained. 
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1148 P. Pallfy-Muhoray et al. 

In the case of weak anchoring, the threshold is given by 

where, for the azimuthal configuration, a,, co and e l  are given by the following 
equations: 

112 
escape (twist) distortion, 0, = (=- 2K33 1) 

and 

and 

Figure 

co=-1+2  l+-  --, 

c , = - 1 + 2  1+-- +-, 

( El:) 7:: 
( 2;:) K22 

W1r1 

splay (in-plane) distortion, 

Critica 
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ro 
mter radius rl versus the internal radius ro (in arbitrary units) *.,r the tilt in- 

plane instability. We assume the bulk bend-splay elastic ratio K 3 J K i  I = 2. The different 
curves are characterized by the inverse extrapolation lengths (uo = Uo/Kll, u1 = U J K , , )  
at the inner and outer surfaces, respectively: a(co, co); b(10,lO); c(5,5); d(1,l); e(m, 1); 
f( 1, co). Note that by diminishing the anchoring strength, the instability threshold 
decreases (a- b+c+d), and a bistability occurs for intermediate anchoring energies. It is 
interesting to note that the threshold is lower for case e, where anchoring is weak only at 
the inner surface, than in case f, where it is weak at the outer surface. 
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Figure 4. Critical outer radius r1 versus the internal radius ro (in arbitrary units), for the axial 

escape instability, where the director twists out-of-plane. We assume the bulk bend-splay 
elastic ratio K33/K11 = 1. The different curves are characterized by the surface-like elastic 
ratio K,4/Kzz, in the range ( -  10,lO). (a) The outer anchoring is strong, whereas the 
internal one is weak (wo = WO/K,, = 1, inverse r units). The threshold for axial escape 
increases with Kz4/KZ2.  The strong anchoring at the external wall prevents bistability. 
(b) The inner anchoring is strong, whereas the outer one is weak (wl = Wl/K,,=0.5, 
inverse r units). Here the weak anchoring at the external surface allows the occurrence of 
bistability. Moreover, reducing K,,/K,, lowers the threshold for the axial escape. The 
curve marked by * shows the behaviour ofthe threshold for K,,/K,, 2 - 1, which is better 
shown in the expanded inset (*: K,,/K,,=O, 1, 3, 5 from right to left). 
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Figure 5. Critical outer radius rl versus the internal radius ro (in arbitrary units) for the axial 

escape instability. The bulk bend-splay elastic ratio has the same value as in figure 4, 
i.e. K 3 , / K 1  = 1. We assume the surface-like elastic ratio K, , /K, ,  = - 5. The anchoring at 
the inner surface is strong, whereas at the outer one it has been reduced from co to 0.05. 
Note the presence of bistability, which becomes more pronounced as the anchoring 
strength at the outer surface is reduced. 

whereas for the radial configuration 

escape (axial bend) distortion, 

bend (in-plane) distortion, 

6 K l l  Uoro 
K33 K33' 

0- 

and 
Kll  Ulr, 
K33 K33 

t,=l--+-. 

Typical threshold behaviours for the azimuthal configuration are shown in figures 3,4 
and 5. 

The behaviour for the radial configuration is quite similar. In both cases, the 
surface-like elastic constant K,, plays a fundamental role in determining the threshold 
for the escape instability. 
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3. Conclusions 
We have shown that the azimuthal and radial configurations of a nematic liquid 

crystal confined between two concentric cylinders become unstable against either 
escape or in-plane deformations at certain values of parameters. For the simple case of 
strong anchoring and in the one constant approximation, the instability occurs at the 
critical ratio of cylinder radii rl/ro=exp(n) for both the azimuthal and radial [7] 
configurations. Both weak anchoring and the K,,-effect reduce the thresholds, and can 
lead to bistability. Some aspects of such a behaviour arise from the fact that the bulk 
free energy is K ln(rl/ro), while the surface terms are ccro and rl. Hence for large 
cylinders, surface terms can dominate. These results may be useful in interpreting the 
behaviour of nematics in the vicinity of line defects or polymer fibres, and also in the 
interiors of cylindrical confining cavities, where an isotropic core could play the role of 
the internal cylinder. 

This work was partially supported by the Ministry of the University and of the 
Scientific and Technical Research of the Italian Government. One of us (P.P.-M.) 
acknowledges support from NSF under grant DMP 89-20147 (ALCOM). 
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